# java8 hashmap
jdk8中,在hashmap链表长度达到8时,会自动转成红黑树
# 源码注释解释
/*
* Implementation notes.
*
* This map usually acts as a binned (bucketed) hash table, but
* when bins get too large, they are transformed into bins of
* TreeNodes, each structured similarly to those in
* java.util.TreeMap. Most methods try to use normal bins, but
* relay to TreeNode methods when applicable (simply by checking
* instanceof a node). Bins of TreeNodes may be traversed and
* used like any others, but additionally support faster lookup
* when overpopulated. However, since the vast majority of bins in
* normal use are not overpopulated, checking for existence of
* tree bins may be delayed in the course of table methods.
*
* Tree bins (i.e., bins whose elements are all TreeNodes) are
* ordered primarily by hashCode, but in the case of ties, if two
* elements are of the same "class C implements Comparable<C>",
* type then their compareTo method is used for ordering. (We
* conservatively check generic types via reflection to validate
* this -- see method comparableClassFor). The added complexity
* of tree bins is worthwhile in providing worst-case O(log n)
* operations when keys either have distinct hashes or are
* orderable, Thus, performance degrades gracefully under
* accidental or malicious usages in which hashCode() methods
* return values that are poorly distributed, as well as those in
* which many keys share a hashCode, so long as they are also
* Comparable. (If neither of these apply, we may waste about a
* factor of two in time and space compared to taking no
* precautions. But the only known cases stem from poor user
* programming practices that are already so slow that this makes
* little difference.)
*
* Because TreeNodes are about twice the size of regular nodes, we
* use them only when bins contain enough nodes to warrant use
* (see TREEIFY_THRESHOLD). And when they become too small (due to
* removal or resizing) they are converted back to plain bins. In
* usages with well-distributed user hashCodes, tree bins are
* rarely used. Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)). The first values are:
*
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
*
* The root of a tree bin is normally its first node. However,
* sometimes (currently only upon Iterator.remove), the root might
* be elsewhere, but can be recovered following parent links
* (method TreeNode.root()).
*
* All applicable internal methods accept a hash code as an
* argument (as normally supplied from a public method), allowing
* them to call each other without recomputing user hashCodes.
* Most internal methods also accept a "tab" argument, that is
* normally the current table, but may be a new or old one when
* resizing or converting.
*
* When bin lists are treeified, split, or untreeified, we keep
* them in the same relative access/traversal order (i.e., field
* Node.next) to better preserve locality, and to slightly
* simplify handling of splits and traversals that invoke
* iterator.remove. When using comparators on insertion, to keep a
* total ordering (or as close as is required here) across
* rebalancings, we compare classes and identityHashCodes as
* tie-breakers.
*
* The use and transitions among plain vs tree modes is
* complicated by the existence of subclass LinkedHashMap. See
* below for hook methods defined to be invoked upon insertion,
* removal and access that allow LinkedHashMap internals to
* otherwise remain independent of these mechanics. (This also
* requires that a map instance be passed to some utility methods
* that may create new nodes.)
*
* The concurrent-programming-like SSA-based coding style helps
* avoid aliasing errors amid all of the twisty pointer operations.
*/
# java8如何将链表转成红黑树的?
- 当链表长度大于8时,调用treeify()将链表转成红黑树
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
// 数组大小小于64的,调用resize将数组大小扩容至2倍大小
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
// 遍历链表,将链表元素转化成TreeNode链
do {
// 调用replacementTreeNode构造TreeNode
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
// TreeNode链为空,将元素设置为hd的首个节点
hd = p;
else {
// TreeNode链不为空,向TreeNode链后面添加元素
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
// TreeNode链表转化为红黑树
hd.treeify(tab);
}
}
- 转换步骤大致如下:
插入树结点元素,具体可以参考二叉搜索树的插入操作
插入的时候,先比较key的hash值来决定插入方向,如果hash值相等的话,再比较compare方法,如果key所属对象没有直接实现Comparable接口,或者compare方法返回0,执行tieBreakOrder,比较两个key所属Class的name,如果还相等,也就是两个对象是同一个类型,那么调用本地方法为两个对象生成hashCode值,再进行比较,hashCode相等的话返回-1。
插入完之后开始调整红黑树,使之符合红黑树的特性
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
// 遍历TreeNode链
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
// 设置root节点
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
// 循环查找当前节点插入的位置并添加节点
int dir, ph;
K pk = p.key;
// hashMap元素的hash值用来表示红黑树中节点数值大小
if ((ph = p.hash) > h)
// 当前节点值小于根节点,dir = -1
dir = -1;
else if (ph < h)
// 当前节点值大于根节点, dir = 1
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
/**
* 当前节点的值等于根节点值。
* 如果当前节点实现Comparable接口,调用compareTo比较大小并赋值dir
* 如果当前节点没有实现Comparable接口,compareTo结果等于0,则调用tieBreakOrder继续比较大小
* tieBreakOrder本质是通过比较k与pk的hashcode
*/
dir = tieBreakOrder(k, pk);
// 当前“根节点”赋值给xp
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
// 如果当前节点小于根节点且左子节点为空 或者 当前节点大于根节点且右子节点为空,直接添加子节点
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
// 平衡红黑树
root = balanceInsertion(root, x);
// 跳出循环,继续向红黑树添加下一个元素
break;
}
}
}
}
// 确保红黑树根节点是数组中该index的第一个节点
moveRootToFront(tab, root);
}
- 插入树节点后,调用balanceInsertion(TreeNode<K,V> root,TreeNode<K,V> x)平衡红黑树
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
// 新增节点默认是红色
x.red = true;
// xp父节点 xpp祖父节点 xppl祖父左节点 xppr 祖父右节点
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
if ((xp = x.parent) == null) {
// x的父节点为空,x应为根节点,应为黑色
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
// 父节点是黑色,祖父节点为空,直接返回
return root;
// 父节点是红色
if (xp == (xppl = xpp.left)) {
// 父节点是祖父节点的左节点
if ((xppr = xpp.right) != null && xppr.red) {
// 叔父节点是红色
// 叔父节点设为黑色
xppr.red = false;
// 父节点设为黑色
xp.red = false;
// 祖父节点设置为红色
xpp.red = true;
// 将祖父节点设置为当前节点,并继续循环操作
x = xpp;
}
else {
// 叔父节点为黑色或者空
if (x == xp.right) {
// x为父节点右节点,则要进行左旋操作
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
// 经过左旋x为左节点
if (xp != null) {
// 父节点涂成黑色
xp.red = false;
if (xpp != null) {
// 祖父节点不为空
// 祖父节点设为红色
xpp.red = true;
// 以租父节点为支点右旋转
root = rotateRight(root, xpp);
}
}
}
}
else {
// 父亲节点为右节点
if (xppl != null && xppl.red) {
// 叔父节点为红色
// 将叔父节点设为黑色
xppl.red = false;
// 父节点设为黑色
xp.red = false;
// 祖父节点设为红色
xpp.red = true;
// 循环操作
x = xpp;
}
else {
if (x == xp.left) {
// 右旋
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
// x为右节点
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
// 以祖父节点为支点左旋
root = rotateLeft(root, xpp);
}
}
}
}
}
}